

Recent updates of JMA's wave models and their products

Takahiro ITO

Office of Marine Prediction

Global Environment and Marine Department

Japan Meteorological Agency (JMA)

Disaster related to high waves (July. 2018)

Introduction

✓ Implementation of shallow water effects

Succeeded in improving the accuracy at shallow water areas in wave height.

✓ Probabilistic wave forecast products

For evaluating possibility of swell coming from far areas and their risk in coastal areas.

✓ Improvement plans

JMA plans to introduce higher resolution to

both deterministic models and ensembles in the coming years.

Table of Contents

Implementation of shallow water effects

• Probabilistic wave forecast products

Improvement plans

Operational wave models at JMA

	Global Wave Model (GWM)	Coastal Wave Model (CWM)	Wave Ensemble System (WENS)
model type	MRI-III (Third generation wave model)		
calculation area	global area $75^\circ~{ m S}{\sim}75^\circ~{ m N}$ $180^\circ~{ m W}{\sim}180^\circ~{ m E}$	sea around japan $20^\circ~$ N \sim 50 $^\circ~$ N $120^\circ~$ E \sim 150 $^\circ~$ E	global area 75 $^{\circ}$ S \sim 75 $^{\circ}$ N 180 $^{\circ}$ W \sim 180 $^{\circ}$ E
grid resolution	0.5° $ imes$ 0.5°	0.05° $ imes$ 0.05°	1.25° $ imes$ 1.25°
wave spectrum components	900 components (25 in frequency \times 36 in direction) frequency : 0.0375 \sim 0.3Hz ; logarithmically divided direction : 10 degree interval		

added Shallow Water Effects(SWEs)

Considered SWEs

Changes in water depth (change in the velocity) effect on wave height and direction.

Energy dissipation by bottom friction

Non-linear energy transfer

Enhancement happens in shallow water area, which leads to quick evolution.

The shallower the water depth and the lower the frequency component, the greater the enhancement.

Water depth in Costal Wave Model

RMSE DIFF:w/SWEs – w/o SWEs (V.S. Coastal buoys) 35.11 0.8 depth < 100mRMSE [m] 0.7 0-day Forecast 0.6 (=Analysis) 00 0.5 680 ၜၯႝၮႝႜႜႜႜႜ 0.15 0.4 ≈_{°N}′ 0 0.10 0.3 0 $^{\circ}$ 0Ý 0 0.05 125°E 735°€ 0.2 130°E 140°E 145°E 18 30 42 48 24 36 0.00 35.1 0.8 RMSE [m] depth > 100m0.7 00 better 1-day Forecast 6 0 0 5 800000

RMSE comparison

(V.S. Nothern Hemisphere buoys)

Table of Contents

Implementation of shallow water effects

• Probabilistic wave forecast products

Improvement Plans

	Operational wave models at JMA					
		Global Wave Model (GWM)	Nodel (C M)	Wave Ensem System (WE	nble NS)	
	model type	type MRI-III (Third generation wave model)				
	calculation area	global area $75^\circ~{ m S}{\sim}75^\circ~{ m N}$ $180^\circ~{ m W}{\sim}180^\circ~{ m E}$	sea around japan $20^\circ~$ N \sim 50 $^\circ~$ N $120^\circ~$ E \sim 150 $^\circ~$ E	global area $75^\circ~{ m S}{\sim}75^\circ$ $180^\circ~{ m W}{\sim}180$	N N S	
	grid resolution	0.5° $ imes$ 0.5°	0.05° $ imes$ 0.05°	1.25° $ imes$ 1.2	25 °	
	wave spectrum components 900 components (25 in frequency × 36 in direct frequency : 0.0375~0.3Hz ; logarithmically d direction : 10 degree interval				n) ded	
	Forced by Global Ensemble Prediction System (40km grid, 27 members)					

Products of WENS

- JMA started operating the Wave ENsemble System (WENS) in June 2016.
- ➢ WENS products are available at <u>SWFDP web site</u> since 2017.
- Products on wave period are added in 2018.

WMO Severe Weather Forecasting Demonstration Project (SWFDP)

Purpose

- To strengthen capacity in National Meteorological and Hydrological Services (NMHSs)
- ✓ To deliver improved forecasts and warnings of severe weather to save lives, livelihoods and property.

Role of JMA

- As a global centre, JMA contributes to SWFDP regional subprojects:
 - South Pacific Islands (RA-V)
 - Southeast Asia
 - Bay of Bengal
 - Central Asia (RA-II)

WMO's Severe Weather Forecasting Demonstration Project (SWFDP) Strengthening capacity of NMHSs in improving forecasts and warnings of meteorological hazards since 2006

Map products (significant wave height) Case 1: Typhoon Mangkhut (T1822)

Results of 5-day forecast (Initial: 00UTC on Sep/10/2018)

Japan Meteorological Agency

Probabilistic forecast maps (peak wave period)

Case 2: the swell from the Southern Ocean

気象庁 Japan Meteorological Agency

EPSgrams at stations (peak wave period)

Case 2: the swell from the Southern Ocean

Exceeding probability

ET.

Table of Contents

Implementation of shallow water effects

• Probabilistic wave forecast products

Improvement Plans

Wave ENsemble System

Next year, we will improve the resolution of the wave prediction system from 1.25x1.25 to 0.5x0.5 and introduce the shallow water effect as the deterministic models.

Global Wave Model

We plan to improve the resolution of the wave model in a few years.

Summary ✓ Implementation of shallow water effects

The accuracy at shallow water areas is improved.

✓ Probabilistic wave forecast products

JMA contributes to WMO SWFDP as one of global centres by providing probabilistic wave forecast products.

Probabilistic products on wave period are added.

It is useful for estimating the effects of swell.

✓ Plans on increasing resolution

- Global Wave Model
 - 0.5x0.5 → 0.25x0.25 [deg]
- Wave Ensemble System
 - 1.25x1.25 → 0.5x0.5 [deg]
 - with shallow water effects implementation

JMA mascot "Harerun"

Operational wave models at JMA

	Global Wave Model (GWM)	Coastal Wave Model (CWM)	Wave Ensemble System (WENS)	
forcing (wind)	Global Spectral Model GSM (20km grid) + typhoon bogusing (~ 72 hours)		Global Ensemble Prediction System (GEPS) 40km grid 27 members	
operation	4 times / day (00, 06, 12, 18 UTC)		2 times / day (00, 12 UTC)	
forecast time	264 hours (12UTC) 132 hours	132 hours	264 hours	

Shallow water effects

Considering variation of the group velocity

with the change of water depth.

✓ Refraction

Considering variation of the propagation direction and wave height due to the change of the propagation velocity with the change of water depth.

Shallow water effects

Source term

Non-linear energy transfer S_{nl} - - energy exchange between spectral components

In shallow water area, S_{nl} is intensified.

$$S_{nl_shallow} = r_s \cdot S_{nl_deep} \qquad r_s = 1.0 + 5.5 \left(\frac{1.0}{\overline{k}} - \frac{5.0}{6.0}\right) \exp\left(-1.25\overline{k}\right) \qquad k: \text{ Wavenumber}$$

Water depth in Global Wave Model

grid resolution 0.5[deg]

M

Around Japan

Verification for WENS updates

